BINARY PRACTICE QUIZ
SOLUTIONS
BASE CONVERSIONS
Convert… |
Show Your Work |
Answer |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
a)
1101 10112 to
_____ 10 |
Note: You do not need to show this many
steps. Having the chart filled in and
any additions or subtractions showing is adequate. I am showing all of these steps to make
sure that you understand how to approach your solution. STEP
1 We start by making the chart. The base that is not base-10 in this
problem is base-2. So the bottom row
of the chart contains powers of 2.
STEP
2 We copy the binary number into the top
of the chart. Note that both steps 1
and 2 are usually done at the same time because the chart needs to be the
correct size to fit the number that we are converting.
STEP
3 We simply add up the numbers that are
under the ones to get our answer. 128+64+16+8+2+1 =219 |
219 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
b)
2314 to
_____ 10 |
STEP
1 We start by making the chart. The base that is not base-10 in this
problem is base-4. So the bottom row
of the chart contains powers of 4.
Since the number that we are converting from has 3 digits, our chart
only needs three columns.
STEP
2 We fill in the top row with our number
to convert from.
STEP
3 So, there is a 2 in the column of 16s,
3 and in the column of 4s and 1 in the column of 1s. Mathematically, we write this as: 2x16 + 3x4 + 1x1 = 32 + 12 + 1 = 45 |
45 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
c)
12110
to _____ 2 |
STEP
2 STEP
3 So this means that we have to work
backwards. We start by asking, how many 128s are
in 121. The answer is zero and we put
that in the chart.
STEP
4 We now ask: How many 64s are in
121? The answer is 1 and put that in
the chart.
We have accounted for 64 of the
121. So we subtract 121-64 to get
57. We now need to continue with 57. STEP
5 We now ask: How many 32s in 57? The answer is 1.
We now do 57-32 to get 25. STEP
6 We now ask: How many 16s are in
25. The answer is 1 and 25-16 gives us
9.
STEP
7
STEP
8 How many 4s are in 1. Zero. How many 2s are in 1. Zero.
STEP
9 How many 1s are in 1. One.
That leaves us with 1 – 1 giving zero.
So we are done.
|
0111 1001 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
d)
2510 to
_____ 3 |
STEP
1 We start with the chart. Powers of three go at the bottom.
STEP
2 We need to work backwards to find out
the base 3 number that we are looking for.
STEP
3 There are no 27s in 25. So zero goes in the first column.
STEP
4 There are two 9s in 25. So we put 2 in the second column. After taking 9 away twice from 25, we are
left with 7. 25 – 9 – 9 = 7
STEP
5 There are two 3s in 7. We put 2 above in the three column. 7 – 3 – 3 = 1.
There is one 1 in the value 1. So we put 1 in the last column and are left
with zero. So we are done.
|
221 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
e)
8C16 to
_____ 2 |
STEP
1 We start off by writing out the chart
of binary and hex digits beside each other. BIN – HEX 0000 – 0 0001 – 1 0010 – 2 0011 – 3 0100 – 4 0101 – 5 0110 – 6 0111 – 7 1000 – 8 1001 – 9 1010 – A 1011 – B 1100 – C 1101 – D 1110 – E 1111 – F STEP 2 We simply replace the hex digits by
the corresponding 4 binary digits. 8 -> 1000 Therefore, our answer is 1000 1100. |
1000 1100 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
f)
1001 10102 to
_____ 16 |
STEP
1 We use the same chart as in the
previous problem. STEP
2 1001 -> 9 1010 -> A Therefore, the answer is 9A. |
9A |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
g)
FUN36
to ____ 10 |
STEP
1 We start with the base-36 chart.
STEP
2 We place the number FUN inside the
chart.
STEP 3 The quiz provides a table to easily
find the value of letters in base 36 (see below). F -> 15 N -> 23 STEP 3 Now we simply do the scientific
notation to solve our problem. F x 1296 + U x 36 + N x 1 =15 x 1296 + 30 x 36 + 23 x 1 =19440 + 1080 + 23 =20543 |
20543 |
*** The quiz ends here.
***
Conversion chart for base 2 to/from base 10.
|
|
|
|
|
|
|
|
27 |
26 |
25 |
24 |
23 |
22 |
21 |
20 |
128 |
64 |
32 |
16 |
8 |
4 |
2 |
1 |
Blank conversion chart
for any base to/from base 10.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table showing value of
letters in bases 11 to 36.
A |
10 |
H |
17 |
O |
24 |
V |
31 |
B |
11 |
I |
18 |
P |
25 |
W |
32 |
C |
12 |
J |
19 |
Q |
26 |
X |
33 |
D |
13 |
K |
20 |
R |
27 |
Y |
34 |
E |
14 |
L |
21 |
S |
28 |
Z |
35 |
F |
15 |
M |
22 |
T |
29 |
|
|
G |
16 |
N |
23 |
U |
30 |
|
|